Search results for " Superinvolution"

showing 8 items of 8 documents

Star-polynomial identities: computing the exponential growth of the codimensions

2017

Abstract Can one compute the exponential rate of growth of the ⁎-codimensions of a PI-algebra with involution ⁎ over a field of characteristic zero? It was shown in [2] that any such algebra A has the same ⁎-identities as the Grassmann envelope of a finite dimensional superalgebra with superinvolution B. Here, by exploiting this result we are able to provide an exact estimate of the exponential rate of growth e x p ⁎ ( A ) of any PI-algebra A with involution. It turns out that e x p ⁎ ( A ) is an integer and, in case the base field is algebraically closed, it coincides with the dimension of an admissible subalgebra of maximal dimension of B.

Discrete mathematicsPure mathematicsAlgebra and Number Theory010102 general mathematicsSubalgebra010103 numerical & computational mathematicsBase field01 natural sciencesSuperalgebraExponential functionSettore MAT/02 - AlgebraExponential growthSuperinvolutionPolynomial identity Involution Superinvolution Codimensions0101 mathematicsAlgebraically closed fieldANÉIS E ÁLGEBRAS ASSOCIATIVOSMathematicsRate of growth
researchProduct

Polynomial codimension growth of algebras with involutions and superinvolutions

2017

Abstract Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let c n ⁎ ( A ) be its sequence of ⁎-codimensions. In [4] , [12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z 2 and a 4-dimensional subalgebra of the 4 × 4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T 2 ⁎ -equivalence, generating varieties of almost polynomial gr…

Discrete mathematicsPure mathematicsAlgebra and Number TheorySubvarietySuperinvolution010102 general mathematicsSubalgebraGraded involution; Growth; Polynomial identity; SuperinvolutionTriangular matrix010103 numerical & computational mathematicsGroup algebraCodimensionPolynomial identity Graded involution Superinvolution GrowthGrowthPolynomial identity01 natural sciencesGraded involutionSettore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsFinite setMathematics
researchProduct

Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions

2018

Let A be a superalgebra with graded involution or superinvolution ∗ and let $c_{n}^{*}(A)$, n = 1,2,…, be its sequence of ∗-codimensions. In case A is finite dimensional, in Giambruno et al. (Algebr. Represent. Theory 19(3), 599–611 2016, Linear Multilinear Algebra 64(3), 484–501 2016) it was proved that such a sequence is polynomially bounded if and only if the variety generated by A does not contain the group algebra of $\mathbb {Z}_{2}$ and a 4-dimensional subalgebra of the 4 × 4 upper-triangular matrices with suitable graded involutions or superinvolutions. In this paper we study the general case of ∗-superalgebras satisfying a polynomial identity. As a consequence we classify the varie…

Involution (mathematics)Multilinear algebraInvolutionSubvarietySuperinvolutionGeneral Mathematics010102 general mathematicsSubalgebra0211 other engineering and technologies021107 urban & regional planning02 engineering and technologyGroup algebraGrowthGrowth; Involution; Polynomial identity; SuperinvolutionPolynomial identity01 natural sciencesSuperalgebraCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsMathematics
researchProduct

Standard polynomials and matrices with superinvolutions

2016

Abstract Let M n ( F ) be the algebra of n × n matrices over a field F of characteristic zero. The superinvolutions ⁎ on M n ( F ) were classified by Racine in [12] . They are of two types, the transpose and the orthosymplectic superinvolution. This paper is devoted to the study of ⁎-polynomial identities satisfied by M n ( F ) . The goal is twofold. On one hand, we determine the minimal degree of a standard polynomial vanishing on suitable subsets of symmetric or skew-symmetric matrices for both types of superinvolutions. On the other, in case of M 2 ( F ) , we find generators of the ideal of ⁎-identities and we compute the corresponding sequences of cocharacters and codimensions.

Numerical AnalysisPolynomialAlgebra and Number TheoryDegree (graph theory)SuperinvolutionNumerical analysis010102 general mathematicsZero (complex analysis)Field (mathematics)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesCombinatoricsMinimal degree; Polynomial identity; SuperinvolutionMinimal degreeTransposeDiscrete Mathematics and CombinatoricsIdeal (ring theory)Geometry and Topology0101 mathematicsNumerical AnalysiGeometry and topologyMathematics
researchProduct

The exponent for superalgebras with superinvolution

2018

Abstract Let A be a superalgebra with superinvolution over a field of characteristic zero and let c n ⁎ ( A ) , n = 1 , 2 , … , be its sequence of ⁎-codimensions. In [6] it was proved that such a sequence is exponentially bounded. In this paper we capture this exponential growth for finitely generated superalgebras with superinvolution A over an algebraically closed field of characteristic zero. We shall prove that lim n → ∞ ⁡ c n ⁎ ( A ) n exists and it is an integer, denoted exp ⁎ ⁡ ( A ) and called ⁎-exponent of A. Moreover, we shall characterize finitely generated superalgebras with superinvolution according to their ⁎-exponent.

Numerical AnalysisSequencePure mathematicsAlgebra and Number TheoryExponentSuperinvolution010102 general mathematicsZero (complex analysis)Exponent; Exponential growth; SuperinvolutionField (mathematics)010103 numerical & computational mathematics01 natural sciencesExponential growthSuperalgebraIntegerBounded functionExponentDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsAlgebraically closed fieldSuperinvolution Exponent Exponential growthMathematics
researchProduct

Superinvolutions on upper-triangular matrix algebras

2018

Let UTn(F) be the algebra of n×n upper-triangular matrices over an algebraically closed field F of characteristic zero. In [18], the authors described all abelian G-gradings on UTn(F) by showing that any G-grading on this algebra is an elementary grading. In this paper, we shall consider the algebra UTn(F) endowed with an elementary Z2-grading. In this way, it has a structure of superalgebra and our goal is to completely describe the superinvolutions which can be defined on it. To this end, we shall prove that the superinvolutions and the graded involutions (i.e., involutions preserving the grading) on UTn(F) are strictly related through the so-called superautomorphisms of this algebra. We …

PolynomialPure mathematicsAlgebra and Number Theory010102 general mathematicsPolynomial identity superinvolution upper-triangular matrices.Zero (complex analysis)Triangular matrixStructure (category theory)010103 numerical & computational mathematicsSingle class01 natural sciencesSuperalgebraSettore MAT/02 - Algebrapolynomial identity superinvolutions upper triangular matrices cocharacter0101 mathematicsAbelian groupAlgebraically closed fieldMathematics
researchProduct

On multiplicities of cocharacters for algebras with superinvolution

2021

Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.

Pure mathematicsSequenceMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraSuperinvolution010102 general mathematicsCodimensionCocharacters; Colength; Multiplicities; SuperinvolutionCocharacters01 natural sciencesmultiplicitiecocharacterSettore MAT/02 - AlgebraIdentity (mathematics)SuperinvolutionBounded function0103 physical sciences010307 mathematical physicsFinitely-generated abelian groupColength0101 mathematicsConstant (mathematics)Mathematics
researchProduct

Varieties of Algebras with Superinvolution of Almost Polynomial Growth

2015

Let A be an associative algebra with superinvolution ∗ over a field of characteristic zero and let $c_{n}^{\ast }(A)$ be its sequence of corresponding ∗-codimensions. In case A is finite dimensional, we prove that such sequence is polynomially bounded if and only if the variety generated by A does not contain three explicitly described algebras with superinvolution. As a consequence we find out that no intermediate growth of the ∗-codimensions between polynomial and exponential is allowed.

SequencePolynomialSuperinvolutionGeneral Mathematics010102 general mathematicsGrowth; Polynomial identity; SuperinvolutionZero (complex analysis)Field (mathematics)010103 numerical & computational mathematicsGrowthPolynomial identity01 natural sciencesExponential functionCombinatoricsSettore MAT/02 - AlgebraBounded functionAssociative algebraMathematics (all)0101 mathematicsVariety (universal algebra)Mathematics
researchProduct